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Summary of Progress

Simultaneous measurements of velocity (in a direction normal to the

flame brush) and temperature in premixed, rod-stabilized, lean methane/air

V-flames demonstrated the presence of high-frequency fluctuations within

slowly drifting flame brushes, thus indicating a structure different from

that of a simple wrinkled-laminar flame. Both the velocity and the

temperature fluctuations gave maximum RMS values at a position somewhere

between the unreacted and the product gases. Furthermore, cross-correla-

tion coefficients of these simultaneous signals assumed rather high values

C.) within the reaction zone, suggesting the possibility that these fluctuations

WU might be induced by the same governing mechanism (which, according to the=..J

L._ theory reported previously, was due to the coupling between chemical kinetics

Cm* and turbulence).

-A paper on the genesis of transverse waves in gaseous detonations was

published in Combustion and Flame. A manuscript on the thermal structure of

turbulent flames was submitted for presentation at the Fall Technical Meeting
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of the Eastern Section of the Combustion Institute. Another manuscript on

turbulence-combustion interactions was in preparation.
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I. Objectives and Scope of Work

The main objectives of this research are to determine and elucidate

major mechanisms governing turbulence-combustion interactions in different

spectral regimes and to provide sound basis for formulating guidelines for

improving combustion efficiency and reducing emissions. During the past

year, simultaneous velocity and temperature fluctuations in premixed,

rod-stabilized, lean methane/air V-flames were examined. High-frequency

fluctuations were found within slowly drifting flame brushes, thus

indicating a structure different from that of a simple wrinkled-laminar

flame. Furthermore, cross-correlation coefficients of these simultaneous

signals assumed rather high values within the reaction zone, suggesting

the possibility that these fluctuations might be induced by the same

governing mechanism (which, according to the theory reported previously,

was due to the coupling between chemical kinetics and turbulence).

A paper on the genesis of transverse waves in gaseous detonations

was published in Combustion and Flame. A manuscript on the thermal struc-

ture of turbulent flames was submitted for presentation at the Fall Technical

Meeting of the Eastern Section of the Combustion Institute. Another

manuscript on turbulence-combustion interactions was in preparation.

II. Results and Discussion

In order to understand the mechanisms governing turbulence-combustion

interactions, it is essential to examine cross-correlations of fluctuations

in velocity and scalar quantities, such as temperature, density, pressure,
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and species concentration. To measure the velocity fluctuations, a

one-component Laser-Doppler-Velocimetry (LDV) system (Model 9100-6)

was purchased from TSI with the support of a DoD-University Research

Instrumentation Grant. The LDV system was installed, tested, and used

(together with frequency-compensated fine-wire thermocouples) to examine

simultaneous velocity (in a direction normal to the flame brush) and

temperature fluctuations in premixed, rod-stabilized, lean methane/air

V-flames. Some of the results are presented below.

Similar to the temperature fluctuations noted in our earlier

experiments, high-frequency velocity fluctuations were also observed

within slowly drifting flame brushes. Figure I shows a segment of the

simultaneous all-pass velocity and temperature signals, together with the

corresponding "instantaneous" mean velocities and temperatures computed

within 25-ms time intervals* and 20-Hz low-pass signals. Both of these

fluctuations gave maximum RMS values at a position somewhere between the

unreacted and the product gases. As shown in Figure 2, the maximum

apparent RMS temperature fluctuations (over time intervals much longer

than the characteristic time of the low-frequency flame drifting) was

240 K instead of 700 K, should the flames be simply wrinkled discontinu-

ities. Similarly, the maximum apparent RMS velocity fluctuations was

0.15 m/s instead of 0.45 m/s.

Figure 3 shows the high-frequency RMS temperature and velocity

fluctuations on the basis of the respective "instantaneous" mean values

The characteristic time for low-frequency drifting was approximately
200 ms, as deduced from previous dual-thermocouple measurements.
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within 25 ms. Again, maximum RMS values occurred at positions somewhere

between the unreacted and the product gases. Furthermore, the RMS values

for a flame in the presence of a 10-mesh turbulence-generating grid at the

burner exit (TFlO) were higher than those in the absence of any turbulence-

generating grid (quasi-laminar or QL), except an opposite trend seemed to

be present for RMS velocity fluctuations near the reacted region. These

findings are all consistent with the postulation that the high-frequency

fluctuations are induced through coupling between chemical kinetics and

turbulence.

Figure 1 also shows a comparison of the "instantaneous" mean values

with the corresponding 20-Hz low-pass signals. Their close agreement

seemed to imply that the RMS values shown in Figure 3 pertained to

frequencies higher than 20 Hz.

Normalized cross-correlation coefficients of the simultaneous

velocity and temperature fluctuations are also shown in Figures 2 and

3, together with the corresponding RMS values. They remained positive

within the entire flame brush, thus indicating the inappropriateness of

the gradient model to account for the turbulent energy transport (in

agreement with the prediction near the unreacted region from a previous

theoretical study on the evolution of fluctuations in a reacting shear

layer). Both the apparent (cf. Figure 2) and the"instantaneous"

(Figure 3) V'-T' cross-correlation coefficients assumed rather high

values (0.8-0.9, maximum) within the reaction zone, suggesting the

possibility that these fluctuations might be induced by the same governing

mechanism (which, according to the theory presented inprevious reports,
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was due to the coupling between chemical kinetics and turbulence).

The "instantaneous" mean velocities and temperatures within the

flame brush were found to fluctuate at low frequencies as the result

of the flame drifting across the signal-monitoring station. Should the

flame be simply a wrinkled discontinuity, they would assume only values

corresponding to the unreacted and the product gases. However, Figure 4

shows the existence of a turbulent structure, with the instantaneous

velocities varying almost linearly with the instantaneous temperatures.

Since the velocities were measured in a direction normal to the flame

brush, this linear relationship was expected because the mass flux crossing
*

the flame brush should remain the same. As this mass flux was related to

the local turbulent-flame-propagation speed, Figure 4 further suggested

that the propagation speed increased by about 25 percent due to the

presence of a 10-mesh grid at the burner exit.

Figure 5 shows the distribution of the apparent low-frequency RMS

velocity and temperature fluctuations (over time intervals much longer

than the characteristic time of the low-frequency flame drifting) for

TFIO and quasi-laminar flames. Again, their maximum values (0.07 and

0.10 m/s or 140 and 190 K, respectively) were much less than the values

(0.45 m/s or 700 K) expected from the wrinkled-laminar-flame model.

Figure 5 also shows the apparent normalized cross-correlation

coefficients of the simultaneous low-frequency velocity and temperature

fluctuations. Since these fluctuations were essentially induced by the

Note that the density-temperature product was assumed to remain constant
for almost the same pressure across the flame brush.
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same mechanism (flame drifting), almost perfect correlation was observed

in a major portion of the flame brush.

Spectral density distributions of mean-square temperature and

simultaneous mean-square velocity fluctuations were examined for both

TF1O and quasi-laminar flames. Figures 6 a and b show the comparison

for the apparent all-pass mean-square values and Figures 7 a and b show

the comparison for the "instantaneous" high-frequency mean-square values

at a position within the flame brush where the RMS values were the maximum.

In all cases, remarkable similarity was observed over the entire spectral

regime between the velocity and the temperature fluctuations. Together

with the earlier observation in Figures 2, 3 and 5 on the rather high

values of the normalized cross-correlation coefficients, this spectral

similarity gave further support to the postulation that both the velocity

and the temperature fluctuations were induced by the same governing

mechanisms.

Consistent with the comparison of the RMS values for TF1O and

quasi-laminar flames in Figure 5 for the low-frequency fluctuations and

in Figure 3 for the higher-frequency fluctuations, Figures 8 a and b

show that the spectral density functions for TFIO were lower in the

low-frequency regime and higher in the higher-frequency regime. Coupled

with the observation from Figure 4 that the local turbulent-flame-

propagation speed was higher for TFIO, one might infer that this speed

*increase was possibly due to the presence of the small (or high-

V.... .
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frequency) eddies as suggested by Damk6hler . Experiments are in progress

to determine the turbulence scales responsible for the enhancement of the

propagation speed and for the flame drifting by the use of two thermocouples

at different relative orientations with respect to the LDV station.

As observed in Figures 2, 3 and 5, the RMS values were the maximum

somewhere between the unreacted and the product gases. Comparisons of

the spectral density distributions of apparent all-pass mean-square

velocity fluctuations just upstream of the flame brush and at a position of

maximum RMS values were shown in Figures 9 a and b for TF10 and quasi-

laminar flames, respectively. A significant increase was observed across

the flame brush in both cases.

Probability density functions (PDF) across the flame brush for the

simultaneous temperature and velocity fluctuations were shown in Figures

10 and 11 for TFIO and QL, respectively. Near the unburned and the burned

regions, the temperatures and the velocities corresponded essentially to

those of the ambient and the products, respectively. Within the flame

brush, however, significant contributions from intermediate states were

observed. Even at the location of the maximum RMS values (denoted as

0 mm in the spatial coordinates), their shapes were not bimodal, confirming

the earlier observation that the turbulent flame structure was not one of

the simple wrinkled-laminar flame.

Damk6hler, G. (1940). Der Einfluss der Turbulenz auf die Flammenge-
schwindigkeit in Gasgemischen. Z. Elektrochem. Angew. Phys. Chem. 46,
601; (1947). Engl. trans: The effect of turbulence on the flame
velocity in gas mixtures. NACA Tech. Mem. 1112.
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III. Publications and Reports

See attached Enclosure.

IV. Professional Personnel and Advanced Degree Awarded

Professor T. Y. Toong.

Z. Y. Du was awarded the degree of Master of Science, May 1985.

Thesis title: Instability Analysis in a Reacting Shear Layer.

V. Interactions

A presentation on Turbulence-Combustion Interactions - Theory and

Experiments was made by T. Y. Toong at the 1985 AFOSR/ONR Contractors

Meeting on Combustion on July 25, 1985 at the California Institute of

Technology.
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ENCLOSURE

Basic Instability Mechanisms

in Chemically Reacting Subsonic and Supersonic Flows

Publications and Reports

(Grant AFOSR-83-0373)

1. Abouseif, G. E., Keklak, J. A. and Toong, T. Y., "Ramjet Rumble:

The Low-Frequency Instability Mechanism in Coaxial Dump Combustors",

Combustion Science and Technology, 36, pp. 83-108, 1984.

2. Abouseif, G. E. and Toong, T. Y., "Theory of Unstable Two-Dimensional

Detonations: Genesis of Transverse Waves", Combustion and Flame, 63,

pp. 191-207, 1986.

3. Toong, T. Y. and Chang, C., "Thermal Structure of Turbulent Premixed

Rod-Stabilized V-Flames", submitted for presentation at the Fall

Technical Meeting, Eastern Section, Combustion Institute, 1986.

4. Toong, T. Y., "Turbulence-Combustion Interactions in Premixed Rod-

Stabilized V-Flames", in preparation.
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